That’s already being attempted in the form of Redox OS. Though I don’t think it’s 100% POSIX compliant. Linux has so much inertia though, and Linus seems all for including Rust in Linux.
That’s already being attempted in the form of Redox OS. Though I don’t think it’s 100% POSIX compliant. Linux has so much inertia though, and Linus seems all for including Rust in Linux.
The rust guys would have gained a lot more traction by just asking the C guys to keep a bunch of comments up to date detailing the semantics and error checking procedures, and promising to edit their rust API if the C code changes, but I suspect they didn’t ask for that because they know that no guarantees come from a comment and they want to be sure that the rust code works across all the possible scenarios and in rust culture, that is always documented in the type system where it can be enforced.
I could be being daft but I thought this is more or less what the Rust guys were asking for. Tell us the current symantics of the system, and if it changes in future let us know what the new semantics are and we will fix the Rust code accordingly.
I do understand what you mean though about enforcing restrictions on what the C guys can do without breaking the Rust code. I think you run into situations wherever two languages meet. The way most projects handle this is the upstream releases a new version, or a release candidate of a new version with their breaking changes documented and then downstream updates their stuff accordingly when they get time. Obviously this is one project, but I imagine it’s possible for the C guys to update stuff in a pull request and then drop an email in LKML to the Rust guys so they know stuff needs fixing. None of this seems that hard to me.
Ultimately though everything here is Linus decision. Either your in or your out. If Linus says yes to Rust doing whatever then that’s what’s going to happen. Likewise if he says no, then it’s not going to happen that way. Until he weighs in no one can really say how this will end.
Personally though I disagree with the C guys. Safety features are important and should be used where it is practical to do so. Until now C has had the justification that it’s still the fastest language and by a significant margin. Now a somewhat safe language like Rust exists with the same speed and capabilities I don’t think we can afford to continue ignoring safety for the sake of a few bruised egos. If this was a proper industry like aviation safety would always come first, and if that means adopting new technologies and forcing people to adapt. I can understand if C devs have a hard time adapting, I don’t expect it to happen overnight. The expectation though should be they should learn some Rust eventually, even if it’s just enough to know the type signatures and what not that they might break with their changes to C code. Kernel devs are supposed to be some of the smartest computer people out there. If they can’t learn even that small amount of another language then should they really still be kernel developers?
They aren’t asking C devs to write Rust code, which is what the guy being a heckler was claiming. Why don’t they want to right Rust? For exactly the reasons you describe. The thing is though that’s not currently being asked of them, all they actually want is the documentation to create that code themselves.
You really don’t have to explain any of the culture clash to me lol. I’ve written both C/C++ and Rust. My C and C++ coding skills are demonstrably better (or at least used to be, it’s been a while) than my Rust skills. Why? Because of how complex those guardrails are. The difference is I have the self awareness to know that my lack of Rust skills doesn’t mean that the language is bad, or that C is a safe language to use. Rust tutorials could be improved. Perhaps an easier to use language like Zig might be more useful for some people. I feel like it’s a good compromise between safety and ease of use. Rust though is still incredibly progressive for the industry, and will improve systems security, maintainability and reliability going forward if only people would stop getting in the way.
Netflix is using FreeBSD for servers. You can’t blame everything they do wrong as being a problem with the new hires. They are using an OS older than Linux that changes more slowly than Linux, simply because it performs the best for their specific application. Rate of change isn’t the issue here.
In fact that’s 90% of what this comment is. Blaming new people and new techniques for problems when you aren’t a part of that organisation and don’t actually know what’s happening.
Working with computers is not the same as working with construction equipment. Some degree of fluid intelligence is needed in this field, no matter how experienced you might be, just like how a surgeon needs steady hands. The people you call greybeards aren’t nearly as old as your father is. We are talking about people who are in their 50s and 40s. They don’t have that level of cognitive decline yet. Likewise some things like ext4 aren’t likely going to be ported to Rust now or even ever. They can keep maintaining them as they are now for the foreseeable future. Plus I don’t want people to have to keep working into their 70s and 80s. At some point it becomes elder abuse. Let people retire man.
C has existed for a long time now. We’ve been trying to replace it for ages, for most of it’s lifespan even. C++ actually was one of the new options at one point. I get it seemed immovable only a decade ago, and I think that has lulled people into a false sense of security. In truth it was inevitable it would have to be replaced one day. It’s already well outlived the life expectancy of a programming language. Just think about Ruby: created long after C yet has already become mostly irrelevant. You talk about the maximum rate of tool change, but C is one of the oldest tools we have, keeping it around would be almost 0 rate of tool change over decades. If you can’t see that C is very slowly dying then you haven’t seen the writing on the wall for the past several years. It’s on you at that point.
We should look back with pride at everything that has been accomplished with C, and just how long it’s been relevant. We can do this while still acknowledging it needs to be phased out gradually.
No one is asking for change that rapid either. Linux started adopting Rust four years ago now. It’s probably still going to have C code inside it for at least a decade from now. This isn’t some quick change, it’s a gradual process. People have plenty of time to adapt, and those who are too old to do so will be around retirement agent if not already dead by the time C is fully phased out.
We of course play plenty of video games together to keep him sharp. We also eat mushrooms, paper when necessary, and he works out a lot. We do all we can, believe me.
Honestly you take more care of yourself and your father than I do. I am only in my 20s and suck at video games. If I took mushies or LSD I would probably lose my mind, assuming it’s all still there in the first place. I suspect there is a good reason why people like me only have a life expectancy of 58 or so.
C has been around for a very long time. I don’t think wanting to replace a 1970s language, that was old when current gray beards were young is a bad thing. People have had more than enough time, and still have a good decade or two to make their careers writing and maintaining C code. Sometimes things have to change, old people be damned. It’s diatribes like this that remind me the human race advances one body at a time as those holding us back die out.
Edit: also we aren’t talking about people in their 70s and 80s here. Most of these “greybeards” are in their 40s and 50s at most. Linux itself is from the 1990s and is therefore more modern than C.
That might be true but it’s not what happened at that specific conference. I beg you watch the clip to see what happened. Also fuck programmers with the attitude you describe. It’s been proven wrong over and over again with so many C memory safety vulnerabilities.
That to me sounds like exactly the reason why developers like the above have left. They are having to take on the burden of gently letting down other devs who are angry over a simple misunderstanding. A misunderstanding that wouldn’t have happened if they had been listening or bothered to ask first before jumping to conclusions. Imagine someone heckles you on stage and you have to respond kindly. I certainly wouldn’t. If someone had listened to my talk, misinterpreted it, then heckled me over it you can bet I would be angry and would respond in kind. To then see this misinformation being spread again would drive me nuts. I can see why they left.
The bottom line for me is that Rust devs who work on this stuff for free shouldn’t be getting hounded by C devs just for asking for proper documentation that frankly they should have provided in the first place. I say this as someone who is skeptical of Rust for various reasons.
Unfortunately there are a lot of problems created by using C in the kernel, and having all of this done manually. Many kernel vulnerabilities including several severe ones have been due to issues with memory management. Even the whitehouse has spoken on these issues related to C. Rust has been proven to be comparable to C in terms of performance, sometimes even faster. So it doesn’t make a great deal of sense to keep using C for new projects.
That all being said Rust has had its own issues. There was a recent vulnerability in older versions of cargo the Rust package manager for instance. It’s a somewhat new language so obviously teething issues are to be expected, and it might be too soon to use Rust for mission critical systems. It’s also a harder language to learn and understand, so that makes adopting it more difficult especially for very experienced C developers like those who work on the Linux kernel. It might be better to wait and see what other languages like Zig and Carbon manage to do, but those are even newer and will take more time to actually be production ready.
I think the point of redox is more than just rewriting Linux in Rust. Architecturally they are very different. Redox uses the more modern microkernel approach, whereas Linux is a modular monolith. There are advantages and disadvantages to both designs. They are actually polar opposites in fact. The compromise is something called a hybrid kernel which is used by Windows NT.
This isn’t a disagreement. One person is stating something incorrect. You can disagree on opinion, but facts are facts. The person being referred to here isn’t asking others to learn Rust, they are just asking for more information about the already existing C code so that they can write their Rust code to interoperate with it. This misunderstanding is exactly why that developer was getting heckled on stage, and is the reason why now one has left the project. I would appreciate it if you didn’t make a misunderstanding sound like a valid opinion. Enough damage has already been done.
ExFAT and FAT32 are not the same.
I also couldn’t use ext4 for my USB stick and expect it to just work as a USB stick.
Why not? It can be adapted to a smaller drive size fairly easily during filesystem creation.
That’s not at all the case in my experience. Sure virtual box modules can be harder to install, but libvirt has so many issues that the average user has no idea about. I’ve had networking issues, display issues, and so on. At one point it read the display scaling information and scaled down the VM display instead of scaling it up. Furthermore RedHat don’t even support virt manager anymore. They want you to use Cockpit. Honestly the all around best virtualization solution is probably VMWare or something like Gnome boxes or QuickEmu.
Do you know which bootloader you have? There are two popular ones in use currently, one called systemd boot, the other is called grub. From reading this post only grub seems to be affected. I don’t really know which one fedora defaults to at the moment, and it likely depends on what happened during the installation process as well.
It’s gotten to the point though that it actually works better on older hardware as the system can’t actually fully utilise the new hardware because it’s not programmed to do that. It’s actually such a sad state of affairs. I don’t know how the Windows devs can cope anymore. If I worked on that product I would hate my life.
You know there is almost more stuff advising how to switch to Linux than there is stuff for existing users or people with their feet in both worlds. There are plenty of people who used Linux but only for server, or as a dual boot, or on one machine but not another. I think they would benefit from advice on how to fully switch over or how to use both systems to full effectiveness together. Like I only fully switched to Linux maybe 6 months ago after going back and forth for years.
We also need to be thinking about how to get people from beginner level to intermediate, and then on to advanced levels. There isn’t a clear progression path forward. It could be something like: Linux Mint -> Arch -> Nix. I believe projects like Arco Linux are striving to fulfill this gap from beginner to advanced.
What ThinkPad is this?
I think you need to add another new line to this comment.
The other fix was reboot your Windows computer at least 15 times.
How is that an argument against anything I have said?
Not everyone was affected though
Only machines running crowdstrike were affected, not all Windows machines. So in neither case were all systems affected. In this case though Microsoft doesn’t bare any responsibility as they didn’t distribute the software. In the case or Arch and EndeavourOS they had a responsibility to check packages before they shipped them to users. In this case the OS maker was more at fault.
Still having these issues very recently.