I know this is c/programmerhumor but I’ll take a stab at the question. If I may broaden the question to include collectively the set of software engineers, programmers, and (from a mainframe era) operators – but will still use “programmers” for brevity – then we can find examples of all sorts of other roles being taken over by computers or subsumed as part of a different worker’s job description. So it shouldn’t really be surprising that the job of programmer would also be partially offloaded.
The classic example of computer-induced obsolescence is the job of typist, where a large organization would employ staff to operate typewriters to convert hand-written memos into typed documents. Helped by the availability of word processors – no, not the software but a standalone appliance – and then the personal computer, the expectation moved to where knowledge workers have to type their own documents.
If we look to some of the earliest analog computers, built to compute differential equations such as for weather and flow analysis, a small team of people would be needed to operate and interpret the results for the research staff. But nowadays, researchers are expected to crunch their own numbers, possibly aided by a statistics or data analyst expert, but they’re still working in R or Python, as opposed to a dedicated person or team that sets up the analysis program.
In that sense, the job of setting up tasks to run on a computer – that is, the old definition of “programming” the machine – has moved to the users. But alleviating the burden on programmers isn’t always going to be viewed as obsolescence. Otherwise, we’d say that tab-complete is making human-typing obsolete lol
I was once working on an embedded system which did not have segmented/paged memory and had to debug an issue where memory corruption preceded an uncommanded reboot. The root cause was a for-loop gone amok, intending to loop through a linked list for ever member of an array of somewhat-large structs. The terminating condition was faulty, so this loop would write a garbage byte or two, ever few hundred bytes in memory, right off the end of the 32 bit memory boundary, wrapping around to the start of memory.
But because the loop only overwrote a few bytes and then overflew large swaths of memory, the loop would continue passing through the entire address space over and over. But since the struct size wasn’t power-of-two aligned, eventually the garbage bytes would write over the crucial reset vector, which would finally reboot the system and end the misery.
Because the system wouldn’t be fatally wounded immediately, the memory corruption was observable on the system until it went down, limited only by the CPU’s memory bandwidth. That made it truly bizarre to diagnose, as the corruption wasn’t in any one feature and changed every time.
Fun times lol