You’re probably correct, but it’ll still have to be competitive with other TLDs, so it probably wont go too high.
You’re probably correct, but it’ll still have to be competitive with other TLDs, so it probably wont go too high.
It’ll get eliminated as a country code, yes, but that leaves it available as a generic TLD. Seen as it will be available and is obviously lucrative, someone will register it and, presumably allow domains to be registered under it. Off the top of my head, I think it costs $10,000 and you have to show you have the infrastructure to support the TLD you register, so an existing registrar is the most likely. That figure is probably out of date, it’s been many years since I checked it, but the infrastructure requirement is the more costly part anyway.
I very much doubt that the .io TLD will vanish, too many big companies use it. Seen as non-country TLDs are allowed, I suspect that as soon as the country code goes away an existing registrar will buy it and .io domains will carry on.
It depends what you want to do with it. If it’s just for storing files/backups then encrypt them before uploading and make sure the key never goes anywhere near the VPS. If it’s for serving up something like a simple website, you probably care more about data integrity than exfiltration, so make sure you have the security, including selinux or equivalent, locked down, and regularly run integrity checks. If it’s for running something interactive, or where data will be generated or downloaded to the machine, you’re out of luck, there’s no even theoretical way of securing that against an adversary with that much access.
NATO’s having a presence in a member state is protection. It reduces the chance of opportunists like Putin invading.
Putin tried to call NATO’s bluff, using Ukraine as a bargaining chip. NATO didn’t blink, and so he started a war. He doesn’t get to do the abuser thing of saying “see what you made me do”. This is on him, and him alone.
He can demand that NATO withdraw all he likes, and I’d have some sympathy for that if it didn’t involve invading another country as leverage. Note, I say some sympathy, not that NATO should actually do it, especially as Putin’s regieme has threatened other countries already.
So, you’re saying that Putin sent demands to NATO, saying they either bend to his will by removing their protection from a large portion of their member states or he’d start a war, and by not signing it NATO are responsible for starting the war? I just want to fully understand your position on this.
It’s been years since I had to admin Windows servers, but I was quite impressed with the number of MS products where the install and configuration tools would output the Powershell commands to carry out the changes you’d asked for. It made it quite a lot easier to automate. I’d love to see that paradigm catch on more widely, with the GUI and CLI having the same functionality and the GUI giving you the commands to run.
The movie “Brewster’s Millions” is based on that premis.
I like it, this is clearly very enterprisey and solution focused, but I would like to suggest a couple of amendments if I may?
Namespaces
We should make full use of namespaces. Make the structural tags be in a language specific namespace (to be referenced in every function spec, obviously) but change the in an out params to use the parameter name as the tag, namespaced to the function they’re for, with a type
attribute.
In memory message queues Have all function invocations be marshaled as xml documents posted to an in memory message queue. Said documents should use a schema that validates the structure and a function specific schema to validate the types of arguments being passed. Namespace everything.
I reckon we could power a medium sided country if we could generate energy from the programmers despair.
I’ve found HSBC to be ok using Firefox on Linux. I don’t know if they have integrations with any accounting software, but the web access works well, and you can export your transactions for processing locally.
ETA: I’ve run small business accounting on Gnucash, I found the learning curve a bit steep, but once you ‘get it’ it’s handy.
Sorry for the slow reply, life occurred.
I think I understand where you’re coming from with the desired to be productive and not reinstall. I think I’ve been there too! One thing that I can suggest, if you do have the time, is to learn a system like Ansible and use it to setup and configure your machine. The discipline of keeping all of the config as source rather than making ad-hoc changes reduces the chance of thinking you’ll make just one little change and breaking something, and, if something does go wrong, you can get back to your working configuration quickly.
Bearing in mind that there really isn’t anything you can do to stop yourself if you’re really determined to not lose the data, because if you can read it at any time you can back it up, the closest you are likely to come is something like creating new key with GPG then using the TPM to wrap your secret key and deleting the original. That way the key is only usable on that specific machine. Then use the key-pair to encrypt your ‘guard’ files. You can still decrypt them because you have the wrapped secret keys and you’re on the same machine, but if you wipe the drive and lose those keys the data is gone. The TPM wrapping prevents you from taking the keys to a different machine to decrypt your data.
There’s an article with some examples here,
Having said all of that, this still doesn’t help if you just clone the disk as all of the data, including the wrapped key and the encrypted files will be cloned. The one difference there is that the serial number of the hard drive will be different. Maybe you could use that, combined with a passphrase as the passphrase for your GPG key, but we’re getting into pretty esoteric territory here. So you could generate a secret key with a command like:
( lsblk -dno SERIAL /dev/sdb ; zenity --title "Enter decrypt password" --password) | sha1sum | cut -c1-40
Where /dev/sdb
is the device your root partition is on. zenity
is a handy utility for displaying dialogs, there are others available. In this use it just prompts for a passsword. We then concatenate the drive serial number from lsblk
with the password you entered and hash the result. The hashing is really only a convenient way to mix the two without worrying about the newline lsblk
spits out. Don’t record the result of this command, but use it to set the passphrase on your new GPG
key. Wrapping the secret key in the manner the article above suggests is a nice extra step to make it harder to move the drive to another machine or mess around in that sort of way, but not strictly necessary as that wasn’t in the scope of your original question.
Now you can encrypt your file with: gpg -e -r <your key name> <your file>'. That will produce an encrypted version of
<your file>called
<your file>.gpg. To decrypt the file you can get
gpg` to use the hashing command from above to get the passphrase with something like:
gpg -d --pinentry-mode=loopback --batch --passphrase-fd 3 <your file>.gpg 3< <( ( lsblk -dno SERIAL /dev/sdb ; zenity --title "Enter decrypt password" --password) | sha1sum | cut -c1-40 )
Once you’ve tested that you can decrypt the file successfully you can remove the original, plaintext, file. Your data is now encrypted with a key that is secured with a passphrase made of a string you know and the serial number of your disk and optionally wrapped with a key from the TPM that is tied to your physical machine. If you change the disk or the machine the data is irretrievable (ignoring the caveats discussed above). I think that’s about as close to your original goal as you can get. It’s rough around the edges, and I’m not sure I’d trust my data to it, but I believe it’ll work. If you do something like this, please test it thoroughly, I can’t guarantee it!
This seems like a very complicated way to achieve your goal! It sounds like sitting yourself down and giving you a stern talking to might be a beter aporoach.
Having said that, if you have these very important files that you don’t want to lose, please make sure they’re backed up somewhere off of your machine. Storage fails, and it’s a horrible feeling losing something important. Unfortunately doing so would defeat the approach you’re thinking of.
This might be a case of needing to reframe the question to get to the cause of the issue, and then solve that. So, why do you want to make it hard to reinstall your machine? Is it the amount of time you spend on it, the chance of screwing it up, needing it working, has it become a compulsion or something else? Maybe if we can get to the root of the issue we can find a solution.
With regard to TPM, it’s basically just a key store, so you can use it fir anything really, althought it’s normally used by generating a TPM key and using it to encrypt the key that’s actually used to encrypt your data, storing the encrypted key with the OS. Just reinstalling won’t wipe the TPM, but unless you made an effort to save the encrypted key it’ll be gone. Given your problem statement above it just adds to the data you’d need to save, which isn’t helpful.
Ok, I’m still not clear on exactly what you’re trying to achieve as I can’t quite see the connection between somehow preventing certain files being duplicated when cloning the disk and preventing yourself from reinstalling the system.
Bear in mind that reinstalling the system would replace all of the OS, so there’s no way to leave counter-measures there, and the disk itself can’t do anything to your data, even if it could detect a clone operation.
If what you’re trying to protect against is someone who knows everything you do accessing your data, you could look to use TPM to store the encryption key for your FDE. That way you don’t know the password, it’s stored encrypted with a secret key that is, in turn, stored and protected by your CPU. That way a disk clone couldn’t be used on any hardware except your specific machine.
Nothing can prevent a disk clone cloning the data, and there’s no way to make something happen when a disk is cloned as you’re not in control of the process.
If you wish to mask the existence of the files, use either full disk encryption, in which case cloning the disk doesn’t reveal the existence of the files without the decrypt password, or use a file based encrypted partition such as veracrypt in which case the cloner would just see a single encrypted blob rather than your file names.
Ultimately encrypting the files with gpg means they have already effectively ‘destroyed or corrupted’ themselves when cloned. If you don’t want to reveal the filenames, just call them something else.
If you could be a bit more specific about your threat model people may have better ideas to help.
It sounds like you’re actually more concerned about the data in the files not being able to ‘pop up’ elsewhere, rather than the files themselves. In thus case I’d suggest simply encrypting them, probably using gpg
. That’ll let you set a password that is distinct from the one used for sudo
or similar.
You should also be using full disk encryption to reduce the risk of a temporary file being exposed, or even overwritten sectors/pages being available to an attacker.
I believe so, but that’s definitely something you’d need to check yourself.
You shouldn’t need a window manager, you should be able to pass a tell mpv to just run full screen.
Alternativly, if you’re up for a bit more work, it looks like you can get mpv to run in tge framebuffer and so not need ecen X11. It might take recompiling a few packages, I’m not sure whether the options are built by default now, but you could have a look at this thread fir example: https://bbs.archlinux.org/viewtopic.php?id=176072
It’s the same problem with a drive like this, or any long term archive, you either store the data unencrypted and rely on physical security, or make sure you store the encryption key and algorithm for the same length of time, in which case you still need the physical security to protect that instead. In both cases you need to make sure you preserve a means to read the data back and details of the format its in so you can actually use it later.
Paper is actually a pretty good way of storing a moderate amount of data long term. Stored correctly it’s unlikely to physically degrade, the data is unlikely to suffer bitrot and it can be read back by anything that can make an image in the visible spectrum. That means you can read it, or take a photo and use OCR to convert it into whatever format is current when the data is needed.
Hmmm, it’s hard to debug pizza remotely, but maybe the heat wasn’t high enough, it normally only takes a minute or two to heat through and cooking it for longer probably would make the base go hard.
Thanks for reporting bavk though, and I’m sorry you had a suboptimal pizza result.
Interestingly, whilst Wikipedia does say that, the language in RFC 1591 (Domain Name System Structure and Delegation) only says:
Likewise, in ICANN’s PRINCIPLES FOR THE DELEGATION AND ADMINISTRATION OF COUNTRY CODE TOP LEVEL DOMAINS, they say:
In neither case do they actually limit two letter TLDs to being country codes, they only state that all country codes in ISO 3166-1 are ccTLDs. In the RFC, the author does suggest it is unlikely that any other TLDs will be assigned, but this has obviously been superseded with the advent of gTLDs. Thus I still consider it likely that the .io TLD will simply transition to being a commercial one, rather than a country one.
Having said all that, it’s entirely possible I’ve missed some more recent rule that tightens this up and only allows two letter domains from ISO 3166-1. If I have I’d be glad of a pointer to it.